Multi-layer carbon stacks for large wind turbine rotor blades

Joerg Radanitsch
16 October 2014 – theCAMX.org
Hexcel Company Profile

- Technology leader in advanced composites
- Serving commercial aerospace, space & defense and industrial
- Net Sales 2013: $1.68 Billion
- 5,300 employees worldwide
- 19 manufacturing sites (including JV in Malaysia)
- Headquarters in Stamford, CT, USA
- Listed on New York and Paris Stock Exchanges
Hexcel in Wind Energy

➢ Market Leader for prepreg materials in Wind Energy
 ▪ Annual capacity of > 20 000 t
 ▪ Global Supplier for over 20 years; Production sites in USA, China, Europe
 ▪ Product development in close cooperation with key accounts; Technical Support and R&T

➢ Carbon materials for load carrying structures in large wind turbine rotor blades
 ▪ Cured Laminates and Prepregs for spar caps or reinforced shells

Carbon sheet materials for spar caps
Multi-layer approach for spar caps

Making use of individual ply functions of the following materials

- **HexPly® Carbon UD Prepreg – 600 gsm + grid**
 - 2 layer material
 - air-vent; UD reinforcement and bonding function

- **Polyspeed® Carbon UD Laminate – 600 gsm**
 - Pre-cured UD reinforcement; exo control, caul plate function

- **HexFIT® Glass Biax Semipreg – 600 gsm +/- 45**
 - air-vent; +/- 45 reinforcement and bonding function

Take advantage of individual ply functions
The air-vent function

Morphological comparison of multi-layer prepreg stacks and infusion part

- Homogeneous fiber area weight
- Low ply waviness
- Porosity in Biax +/-45°
- Very uniform fiber/matrix distribution
- Low porosity due to grid layer
- Good air-vent
- resin rich domains at infusion channels
- some 90° waviness
Multi-layer build on a micro scale

- **Layup 1**
 - Carbon UD Prepreg + grid

- **Layup 2**
 - Biax prone to entrap air at fiber crossings

- **Layup 3**
 - Polyspeed® Carbon UD Laminate to flatten a stack, caul plate function

Carbon laminate to increase process robustness and quality
Porosity of different part sections

Porosity in carbon areas is very low due to air-vent grid layer.
Multi-layer performance

➢ Wrong stack sequence leading to defects

Example: The absence of air vent scrim on C-Laminate / C-Prepreg interface leads to entrapped air.

Stack sequence is key for multi-layer build
Carbon multi-layer – interfaces by ILSS

Pure prepreg vs. alternating specimen build with pre-cured C-laminate

<table>
<thead>
<tr>
<th>test</th>
<th>layup</th>
<th>no. layers</th>
<th>product</th>
<th>direction</th>
<th>sequence</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILSS</td>
<td>C-Prepreg</td>
<td>4</td>
<td>UD600</td>
<td>0°</td>
<td>PPPP</td>
<td>70 MPa</td>
</tr>
<tr>
<td>ILSS</td>
<td>alternating</td>
<td>4</td>
<td>UD600+Polyspeed</td>
<td>0°</td>
<td>PPPL</td>
<td>68 MPa</td>
</tr>
<tr>
<td>ILSS</td>
<td>alternating</td>
<td>4</td>
<td>UD600+Polyspeed</td>
<td>0°</td>
<td>PLPL</td>
<td>61 MPa</td>
</tr>
<tr>
<td>ILSS</td>
<td>Block cut</td>
<td>-</td>
<td>UD600+Polyspeed</td>
<td>0°</td>
<td>PPPL</td>
<td>78 MPa</td>
</tr>
</tbody>
</table>

4 ply Prepreg - ILSS: 70 MPa

4 ply Prepreg & pre-cured - ILSS: 68 MPa

“Block cut” specimens, 2,4 mm - ILSS: 78 MPa

Highest ILSS for multi-layer material
Polyspeed® - function as caul plate

Left: C-laminate reduces defect size Right: no C-laminate, defect visible

Wire test to display caul plate function
Polyspeed® - function as caul plate II

- A distortion (wire) in 90° direction causes a wavy prepreg stack.

- Introducing Polyspeed® pre-cured carbon UD laminate, waves are totally smoothened. Polyspeed ® functions as a build in caul plate.

Polyspeed reduces defect area and increases performance.
Polyspeed® - function as caul plate III

- Caul plate on top of the prepreg stack leads to plane surface, waves are present throughout the entire specimen cross section.

- Caul plate on top and C-laminate inside, waves are stopped at C-laminate.

Laminate improves fiber alignment in carbon spar caps
Carbon cube experiment

Introducing M79 - Low exotherm & low temperature cure epoxy resin to multi-layer concept
The Value of Low Exotherm in Thick Parts

- Faster ramp rate
- Higher dwell temperature for shorter time
- Net reduction in cure cycle

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Cure Time (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°C</td>
<td>480min</td>
</tr>
<tr>
<td>80°C</td>
<td>240min</td>
</tr>
<tr>
<td>90°C</td>
<td>130min</td>
</tr>
<tr>
<td>100°C</td>
<td>75min</td>
</tr>
<tr>
<td>120°C</td>
<td>60min</td>
</tr>
</tbody>
</table>

Low exotherm matrix M79
Standard exotherm matrix M9
Carbon cube experiment - layout

- Low exotherm resin in a very thick carbon part dimensions 400 x 400 x 400 mm, **beyond existing applications**
- Material: M79 UD **600 gsm prepreg** with **air-vent grid** layer
- **695 plies** of HexPly® M79 carbon fiber prepreg
- Layup in tool (4 sides); cured in vacuum bag and press (top / bottom)

Easy layup process of the 695 prepreg plies
Carbon cube experiment – results I

Results after cure

- $T_{\text{max \, exo}} < 140 \, ^{\circ}\text{C} \, (\text{center}); \, T_{\text{surface}} < 90 \, ^{\circ}\text{C}$
- Once at 80°C, cure took 6 hours only
- All parts of the cube fully cured (calc.)
Carbon cube experiment – results II

- The very low exotherm (100 - 120 J/g) of M79 enables to cure thick sections at moderate temperatures
- Multi-layering of carbon prepreg with air-vent layers for easy processing and close to monolithic part character

You can see the cube on Hexcel’s booth at CAMX
Thank you!

Joerg Radanitsch - CAMX 2014

Joerg.Radanitsch@hexcel.com
Disclaimer

This document and all information contained herein is the sole property of HEXCEL CORPORATION. No intellectual property rights are granted by the delivery of this document or the disclosure of its content.

This document shall not be reproduced or disclosed to a third party without the express written consent of HEXCEL. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, HEXCEL will be pleased to explain the basis thereof.